ABSTRACTIn this study, the dynamic response of pile foundation in dry sandy soil excited by two opposite rotary machines was considered experimentally. A small scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of two small motors supplied with eccentric mass (0.012 kg) and eccentric distance (20 mm) representing the two opposite rotary machines, an aluminum shaft as the pile, and a steel plate a pile cap. The experimental work was achieved taking the following parameters into considerations: pile embedment depth ratio (L/d, where L is the pile length and d is its diameter) and operating frequency of the rotary machines. All tests were conducted in medium dense fine sandy soil with 60% relative density. Twelve tests were performed to measure the change in load transferred through the pile’s tip to the underlying soil. To predict precisely the dynamic load that will be induced from the rotary machines, a mini load cell with a capacity of 100 kg was mounted between the aluminum plate (the machine base) and the steel plate (pile cap). The results revealed that, before machine operation, the pile tip load was approximately equal to the static load (machine and pile cap), whereas during machines’ operation, the pile tip load decreased for all embedment depth ratios and operating frequencies. This reduction was due to the action of skin friction that was mobilized along the pile during operation, and as a result the factor of safety against pile bearing failure increases. For all operating frequencies and pile lengths, the factor of safety against bearing failure increased during machines’ operation, where the pile tip load became less than its value before starting operation. During operation, the skin friction resistance mobilized along pile length led to decrease the bearing load.
Read full abstract