Tin sulfides have received significant attention as potential candidates for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to their abundance, high theoretical capacity, and favorable working potential. However, the inherent drawbacks such as slow kinetics, low intrinsic electronic conductivity, and significant volume change during cycling, have not been adequately addressed. In this study, we propose a rational and effective approach to simultaneously overcome these challenges by embedding stannous sulfide (SnS) quantum dots (QDs) within a crosslinked nitrogen (N) and sulfur (S) co-doped carbon fiber network (SnS-CFN). The well-dispersed and densely packed SnS QDs, measuring approximately 2 nm, not only minimize the diffusion distance of Na+/K+ ions but also buffer the volume expansion effectively. The N, S co-doped carbon fiber network in SnS-CFN serves as a highly conductive and stable support structure that inhibits SnS QDs aggregation, creates ion/electron transport channels, and alleviates volume variations. Density functional theory (DFT) calculations further confirm that the combination of SnS QDs and the N, S co-doped carbon effectively reduces the adsorbed energies in the interlayer of SnS-CFN. These advantages synergistically contribute to the exceptional sodium/potassium storage performance of the SnS-CFN composite. Consequently, SnS-CFN demonstrates exceptional cyclability, retaining a capacity of 251.5 mAh/g over 10,000 cycles, and exhibits excellent rate capability (299.5 mAh/g at 20 A/g) when employed in SIBs. When used in PIBs, a high capacity of 112.3 mAh/g at 2 A/g after 1000 cycles, a remarkable capacity of 51.4 mAh/g at 5 A/g after 10,000 cycles, and a remarkable rate capability with a specific capacity of 55.5 mAh/g at a high current density of 20 A/g have been achieved.
Read full abstract