Purpose: Heart rate variability is a commonly used measurement to evaluate functioning of autonomic nervous system, psychophysiological stress, and exercise intensity and recovery. HRV measurements contain artefacts such as extra, missed or misaligned beat detections, which can produce significant distortion on HRV parameters. In this paper, a robust automatic method for artefact detection from HRV time series is proposed.Methods: The proposed detection method is based on time-varying thresholds estimated from distribution of successive RR-interval differences combined with a novel beat classification scheme. The method is validated using simulated extra, missed and misaligned beat detections as well as real artefacts such as atrial and ventricular ectopic beats.Results: The sensitivity of the algorithm to detect simulated missed/extra beats was 100%. The sensitivity to detect real atrial and ventricular ectopic beats was 96.96%, the corresponding specificity being 99.94%. The mean error in HRV parameters after correction was <2% for missed and extra beats as well as for misaligned beats generated with large displacement factors. Misaligned beats with smallest displacement factor were the most difficult to detect and resulted in largest HRV parameter errors after correction, largest errors being <8%.Conclusions: The HRV artefact correction algorithm presented in this study provided comparable specificity and better sensitivity to detect ectopic beats as compared to state-of-the-art algorithms. The proposed algorithm detects abnormal beats with high accuracy, is relatively easy to implement, and secures reliable HRV analysis by reducing the effect of possible artefacts to tolerable level.
Read full abstract