BackgroundFunctional magnetic resonance imaging (fMRI) has been implemented widely to study brain connectivity. In particular, time-varying connectivity analysis has emerged as an important measure to uncover essential knowledge within the network. On the other hand, independent component analysis (ICA) has served as a powerful tool to preprocess fMRI data before performing network analysis. Together, they may lead to novel findings. MethodsWe propose a new framework (GICA-TVGL) that combines group ICA (GICA) with time-varying graphical LASSO (TVGL) to improve the power of analyzing functional connectivity (FNC) changes, which is then applied for neuro-developmental study. To investigate the performance of our proposed approach, we apply it to capture dynamic FNC using both the Philadelphia Neurodevelopmental Cohort (PNC) and the Pediatric Imaging, Neurocognition, and Genetics (PING) datasets. ResultsOur results indicate that females and males in young adult group possess substantial difference related to visual network. In addition, some other consistent conclusions have been reached by using these two datasets. Furthermore, the GICA-TVGL model indicated that females had a higher probability to stay in a stable state. Males had a higher tendency to remain in a globally disconnected mode. Comparison with existing methodThe performance of sliding window approach is largely affected by the window size selection. In addition, it also assumes temporal locality hypothesis. ConclusionOur proposed framework provides a feasible method to investigate brain dynamics and has the potential to become a widely used tool in neuroimaging studies.
Read full abstract