Abstract

Functional magnetic resonance imaging (fMRI) is widely used to identify neural correlates of cognitive tasks. However, the analysis of functional connectivity is crucial to understanding neural dynamics. Although many studies of cerebral circuitry have revealed adaptative behavior, which can change during the course of the experiment, most of contemporary connectivity studies are based on correlational analysis or structural equations analysis, assuming a time-invariant connectivity structure. In this paper, a novel method of continuous time-varying connectivity analysis is proposed, based on the wavelet expansion of functions and vector autoregressive model (wavelet dynamic vector autoregressive-DVAR). The model also allows identification of the direction of information flow between brain areas, extending the Granger causality concept to locally stationary processes. Simulation results show a good performance of this approach even using short time intervals. The application of this new approach is illustrated with fMRI data from a simple AB motor task experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.