Model-based control schemes, forward dynamics simulations, constraint force computation and time-optimal motion planning have one major thing in common, they all depend on the dynamics parameters of the system. Physical consistency of the dynamics parameters ensures a positive definite mass matrix and correct constraint forces. The most common inverse dynamics identification method – the base-parameters – lack physical consistency. This paper proposes an identification method to identify physically consistent dynamics parameters for Delta-like robots while further showing the effects of friction in passive joints. A tailored model to compute the crucial constraint forces appearing in the mechanism based on the identified dynamics parameters is derived. This model is used to additionally consider constraint forces besides actuation torques for time-optimal motion planning of a typical pick and place task. This is done without any prior CAD data of the robot from the manufacturer.
Read full abstract