Abstract

The aim of the present research is to find an optimal reference trajectory for an underactuated manipulator of type Xn-1Rp, where X is any type of joints and R is the last rotary joint, for n≥3. It is worth noting that in the case of absence of control of fully actuated manipulator, some second-order nonholonomic constraints may appear; these are known as acceleration constraints. The second-order nonholonomic constraint is a non-integrable differential equation. For this purpose, it was decided to combine two methods. The first one provides the open-loop control of the manipulator whatever the motion time is; in practice, the motion time should be minimal under the given geometric, technological, and dynamic constraints. To address this issue, a second method, based on the offline optimization approach, was used to achieve the time-optimal motion. It was revealed that the above combination gives an optimal control trajectory for an underactuated manipulator in which a reference trajectory can be utilized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call