Women with premature ovarian insufficiency (POI) lack oestrogen, which is a key determinant of bone growth, epiphyseal closure, and bone tissue organisation. Although dual-energy X-ray absorptiometry (DXA)-derived areal bone mineral density (BMD) remains the gold standard for fracture risk evaluation, it does not fully characterise the skeletal abnormalities present in these women. Hence, we aimed to assess hip/femur anatomy, strength, and geometry and femoral alignment using advanced hip analysis (AHA). We conducted a cross-sectional, case-control study including 89 women with spontaneous normal karyotype POI (s-POI) or iatrogenic POI (i-POI), aged 20-50 years compared with 89 age- and body mass index (BMI)-matched population-based female controls. Hip anatomy, strength, geometrical parameters, and femur alignment were measured using hip DXA images and Lunar AHA software. Femoral orientation angle (FOA) was quantified as the overall orientation of the femur with respect to the axis of the forces transmitted from the upper body. The median age of POI diagnosis was 35 (18-40) years; the mean POI duration at the time of DXA was 2.07 (range 0-13) years, and 84% of POI women received oestrogen therapy. Areal BMD at all sites was significantly lower in the POI group (all P < .05). Indices of compressive and bending strength were lower in women with POI compared with controls, specifically the cross-sectional area (CSA, mm2) and section modulus (SM, mm3) (139.30 ± 29.08 vs 157.29 ± 22.26, P < .001 and 665.21 ± 129.54 vs 575.53 ± 150.88, P < .001, respectively). The FOA was smaller (124.99 ± 3.18) in women with POI as compared with controls (128.04 ± 3.80; P < .001) at baseline and after adjusting for height and femoral neck BMD. Alongside lower BMD at multiple sites, the femora of women with POI demonstrate reduced strength and a misalignment with forces transmitted from the upper body. Further research is needed to establish the role of these newly identified features and their role in fracture risk prediction in this population.
Read full abstract