ObjectiveElectronic health records (EHR), containing detailed longitudinal clinical information on a large number of patients and covering broad patient populations, open opportunities for comprehensive predictive modeling of disease progression and treatment response. However, since EHRs were originally constructed for administrative purposes not for research, in the EHR-linked studies, it is often not feasible to capture reliable information for analytical variables, especially in the survival setting, when both accurate event status and event times are needed for model building. For example, progression-free survival (PFS), a commonly used survival outcome for cancer patients, often involves complex information embedded in free-text clinical notes and cannot be extracted reliably. Proxies of PFS time such as time to the first mention of progression in the notes are at best good approximations to the true event time. This leads to difficulty in efficiently estimating event rates for an EHR patient cohort. Estimating survival rates based on error-prone outcome definitions can lead to biased results and hamper the power in the downstream analysis. On the other hand, extracting accurate event time information via manual annotation is time and resource intensive. The objective of this study is to develop a calibrated survival rate estimator using noisy outcomes from EHR data. Materials and MethodsIn this paper, we propose a two-stage semi-supervised calibration of noisy event rate (SCANER) estimator that can effectively overcome censoring induced dependency and attains more robust performance (i.e., not sensitive to misspecification of the imputation model) by fully utilizing both a small-labeled set of gold-standard survival outcomes annotated via manual chart review and a set of proxy features automatically captured via EHR in the unlabeled set. We validate the SCANER estimator by estimating the PFS rates for a virtual cohort of lung cancer patients from one large tertiary care center and the ICU-free survival rates for COVID patients from two large tertiary care centers. ResultsIn terms of survival rate estimates, the SCANER had very similar point estimates compared to the complete-case Kaplan Meier estimator. On the other hand, other benchmark methods for comparison, which fail to account for the induced dependency between event time and the censoring time conditioning on surrogate outcomes, produced biased results across all three case studies. In terms of standard errors, the SCANER estimator was more efficient than the KM estimator, with up to 50% efficiency gain. ConclusionThe SCANER estimator achieves more efficient, robust, and accurate survival rate estimates compared to existing approaches. This promising new approach can also improve the resolution (i.e., granularity of event time) by using labels conditioning on multiple surrogates, particularly among less common or poorly coded conditions.