To tackle the issue of limited sample data in small sample fault diagnosis for rolling bearings using deep learning, we propose a fault diagnosis method that integrates a KANs-CNN network. Initially, the raw vibration signals are converted into two-dimensional time-frequency images via a continuous wavelet transform. Next, Using CNN combined with KANs for feature extraction, the nonlinear activation of KANs helps extract deep and complex features from the data. After the output of CNN-KANs, an FAN network module is added. The FAN module can employ various feature aggregation strategies, such as weighted averaging, max pooling, addition aggregation, etc., to combine information from multiple feature levels. To further tackle the small sample issue, data generation is performed on the original data through diffusion networks under conditions of fewer samples for bearings and tools, thereby increasing the sample size of the dataset and enhancing fault diagnosis accuracy. Experimental results demonstrate that, under small sample conditions, this method achieves higher accuracy compared to other approaches.
Read full abstract