Abstract

Low probability of intercept (LPI) radar signals are widely used in electronic countermeasures due to their low power and large bandwidth. However, they are susceptible to interference from noise, posing challenges for accurate identification. To address this issue, we propose an LPI radar signal recognition method based on feature enhancement with deep metric learning. Specifically, time-domain LPI signals are first transformed into time–frequency images via the Choi–Williams distribution. Then, we propose a feature enhancement network with attention-based dynamic feature extraction blocks to fully extract the fine-grained features in time–frequency images. Meanwhile, we introduce deep metric learning to reduce noise interference and enhance the time–frequency features. Finally, we construct an end-to-end classification network to achieve the signal recognition task. Experimental results demonstrate that our method obtains significantly higher recognition accuracy under a low signal-to-noise ratio compared with other baseline methods. When the signal-to-noise ratio is −10 dB, the successful recognition rate for twelve typical LPI signals reaches 94.38%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.