Moving small target detection under complex background in infrared image sequence is one of the major challenges of modern military in Early Warning Systems (EWS) and the use of Long-Range Strike (LRS). However, because of the low SNR and undulating background, the infrared moving small target detection is a difficult problem in a long time. To solve this problem, a novel spatial–temporal detection method based on bi-dimensional empirical mode decomposition (EMD) and time-domain difference is proposed in this paper. This method is downright self-data decomposition and do not rely on any transition kernel function, so it has a strong adaptive capacity. Firstly, we generalized the 1D EMD algorithm to the 2D case. In this process, the project has solved serial issues in 2D EMD, such as large amount of data operations, define and identify extrema in 2D case, and two-dimensional signal boundary corrosion. The EMD algorithm studied in this project can be well adapted to the automatic detection of small targets under low SNR and complex background. Secondly, considering the characteristics of moving target, we proposed an improved filtering method based on three-frame difference on basis of the original difference filtering in time-domain, which greatly improves the ability of anti-jamming algorithm. Finally, we proposed a new time–space fusion method based on a combined processing of 2D EMD and improved time-domain differential filtering. And, experimental results show that this method works well in infrared small moving target detection under low SNR and complex background.