Abstract

Orthogonal frequency division multiplexing (OFDM) can be susceptible to impulsive noise arising from numerous sources in a noisy communications environment. Conventional Reed–Solomon (RS) codes are particularly useful for burst-error corrections and have been employed in OFDM systems to manage impulsive noise. The performance gains, however, have been somewhat limited given the sensitivity to other noise types typically present in a noisy channel. In this regard, a novel scheme utilizing a time-domain pre-processing mean filter in combination with RS coding is proposed for impulsive noise suppression in OFDM systems. This scheme is split into two stages. In the first stage, a proposed mean filter effectively detects and removes the impulsive noise using the measured statistics of the impulsive noise. In contrast to a conventional blanking type filter, the traditional mean replacement value is replaced by a composite comparison value (CCV). This principle creates a more accurate estimate of the original OFDM signal after impulsive noise removal. The residual impulsive noise is then managed by a RS decoder in the second stage. Our results show that this dual faceted approach improves OFDM performance when compared to filtering and coding techniques alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.