This paper aims to solve an inverse heat conduction problem in two-dimensional space under transient regime, which consists of the estimation of multiple time-dependent heat sources placed at the boundaries. Robin boundary condition (third type boundary condition) is considered at the working domain boundary. The simultaneous identification problem is formulated as a constrained minimization problem using the output least squares method with Tikhonov regularization. The properties of the continuous and discrete optimization problem are studied. Differentiability results and the adjoint problems are established. The numerical estimation is investigated using a modified conjugate gradient method. Furthermore, to verify the performance of the proposed algorithm, obtained results are compared with results obtained from the well-known finite-element software COMSOL Multiphysics under the same conditions. The numerical results show that the proposed algorithm is accurate, robust and capable of simultaneously representing the time effects on reconstructing the time-dependent Robin coefficient and heat flux.