Abstract
A novel meshless numerical procedure based on the method of fundamental solutions (MFS) and the heat polynomials is proposed for recovering a time-dependent heat source and the boundary data simultaneously in an inverse heat conduction problem (IHCP). We will transform the problem into a homogeneous IHCP and initial value problems for the first-order ordinary differential equation. An improved method of MFS is used to solve the IHCP and a finite difference method is applied for solving the initial value problems. The advantage of applying the proposed meshless numerical scheme is producing the shape functions which provide the important delta function property to ensure that the essential conditions are fulfilled. Numerical experiments for some examples are provided to show the effectiveness of the proposed algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have