A high-performance vector quantization (VQ) codebook search algorithm is proposed in this paper. VQ is an important data compression technique that has been widely applied to speech, image, and video compression. However, the process of the codebook search demands a high computational load. To solve this issue, a novel algorithm that consists of training and encoding procedures is proposed. In the training procedure, a training speech dataset was used to build the squared-error distortion look-up table for each subspace. In the encoding procedure, firstly, an input vector was quickly assigned to a search subspace. Secondly, the candidate code word group was obtained by employing the triangular inequality elimination (TIE) equation. Finally, a partial distortion elimination technique was employed to reduce the number of multiplications. The proposed method reduced the number of searches and computation load significantly, especially when the input vectors were uncorrelated. The experimental results show that the proposed algorithm provides a computational saving (CS) of up to 85% in the full search algorithm, up to 76% in the TIE algorithm, and up to 63% in the iterative TIE algorithm. Further, the proposed method provides CS and load reduction of up to 29–33% and 67–69%, respectively, over the BSS-ITIE algorithm.
Read full abstract