Observers viewed monocular animations of rotating dihedral angles and were required to indicate their perceived structures by adjusting the magnitude and orientation of a stereoscopic dihedral angle. The motion displays were created by directly manipulating various aspects of the image velocity field, including the mean translation, the horizontal and vertical velocity gradients, and the manner in which these gradients changed over time. The adjusted orientation of each planar facet was decomposed into components of slant and tilt. Although the tilt component was estimated with a high degree of accuracy, the judgments of slant exhibited large systematic errors. The magnitude of perceived slant was determined primarily by the magnitude of the velocity gradient scaled by its direction. The results also indicate that higher order temporal derivatives of the moving elements had little effect on observers' judgments.