Abstract

Area MTN5 in the macaque brain is one of the major cortical regions involved in the analysis of retinal image motion. The majority of the neurons in this cortical area have non-uniform antagonistic surrounds as components of their receptive field complexes. Theoretical studies indicate that such asymmetrical surrounds should enable neurons to extract orientation in depth from motion. Here we show that nearly half of the MTN5 neurons encode the tilt component of the orientation in depth of a plane specified by motion. Furthermore, we show that such selectivity for depth from motion depends on the presence of an asymmetrical surround and on the speed tuning of those asymmetrical surround influences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.