In situ formation of TiB2–Mg2TiO4 composites was investigated by combustion synthesis involving the solid-state reaction of Ti with boron and magnesiothermic reduction of B2O3. Certain amounts of MgO and TiO2 were added to the reactant mixtures of Ti/B/Mg/B2O3 to act as the moderator of highly exothermic combustion and a portion of the precursors to form Mg2TiO4. Two combustion systems were designed to ensure that synthesis reactions were sufficiently energetic to carry on self-sustainably, that is, in the mode of self-propagating high-temperature synthesis (SHS). Consistent with thermodynamic analyses, experimental results indicated that the increase in pre-added MgO and TiO2 decreased the combustion temperature and propagation velocity of the flame front. MgO was shown to have a stronger dilution effect on combustion exothermicity than TiO2, because the extent of magnesiothermic reduction of B2O3 was reduced in the MgO-added samples. In situ formation of the TiB2–Mg2TiO4 composite was achieved from both types of samples. It is believed that, in the course of the SHS progression, Mg2TiO4 was produced through a combination reaction between MgO and TiO2, both of which were entirely or partially generated from the metallothermic reduction of B2O3. The microstructure of the products exhibited fine TiB2 crystals in the shape of short rods and thin platelets that existed within the gaps of Mg2AlO4 grains. Both constituent phases were well distributed. A novel and efficient synthesis route, which is energy- and time-saving, for producing Mg2TiO4-containing composites was demonstrated.