Abstract

A series of the VN/TiB2 nanomultilayers with different modulation ratios (tVN:tTiB2) and different modulation periods were synthesized via a magnetron sputtering system. The cross-sectional transmission electron microscopy (TEM) and x-ray diffraction (XRD) examinations indicated that in the alternately deposited monolayers of the VN and TiB2, due to the influence of the crystal (111)VN texture, TiB2 layer presented epitaxial growth on the surface of the VN layer when its tVN:tTiB2 was 5:1. Moreover, the formation of the TiB2 crystal promoted the growth of (200)VN and significantly improved the preferential growth of nanomultilayers. With decreasing tVN:tTiB2 to 1:7, the thin VN layer was crystallized under the introduction of crystalline TiB2 layers. A type of double epitaxial growth was observed to be a main reason for the coherent growth of the VN/TiB2 nanomultilayers within a certain thickness. Consequently, the multilayers appeared to have a corresponding superhard effect, which presented a corresponding anomalous enhancement of hardness and elastic modulus. The highest hardness and elastic modulus reached 41.8 and 492.4GPa, respectively, at a 1:7 ratio of tVN:tTiB2. Residual stresses were also released due to the coherent growth in the interfaces. Meanwhile, the coherent growth model of the multilayer was used to explain the growth mechanism of the VN/TiB2 nanomultilayers in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.