Abstract

Photocatalytic water oxidation for O2 evolution is known as a bottle neck in water splitting. Various strategies have been conducted to keep the energetics of photogenerated holes or to create more holes in the bulk to reach the surface for efficient photocatalytic water oxidation. Our previous study demonstrated the effectiveness of interstitial boron doping in improving photocatalytic water oxidation by lowering the valence band maximum of TiO2 with a concentration gradient of boron. In this study, homogeneous doping of interstitial boron was realized in a TiO2 shell with mixed anatase/rutile phases that was produced by the gaseous hydrolysis of the surface layer of TiB2 crystals in a moist argon atmosphere. Consequently, the homogeneous doping and lowered valence band maximum improved the energetics of holes for efficient photocatalytic water oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.