The current study was designed to evaluate the biotoxicity of screened echo-friendly Bacillus thuringiensis strains from different areas of Pakistan. Out of 50 samples, 36% Bt. isolates were quarantined from soil containing cattle waste after morphological, biochemical, and molecular characterization. The toxicity bioassays with Bt. spores and protein diet proved that 11 Bt. isolates were utmost noxious to 3rd instar larvae of mosquitoes Aedes aegypti, Anopheles stephensi, and Culex pipiens. The entopathogenic activity of first 4 Bt. toxins against A. aegypti was highly lethal as compared to the other dipteran larvae. The toxicity (LC50) of spore diet of Bt. strains GCU-DAB-NF4 (442.730 ± 0.38 μg/ml), NF6 (460.845 ± 0.29 μg/ml), NF3 (470.129 ± 0.28 μg/ml), and NF7 (493.637 ± 0.70 μg/ml) was quite high against A. aegypti as compared to the C. pipiens after 24 h of incubation. The highest toxicity of total cell protein was shown by GCU-DAB-NF4 (LC50 = 84.10 ± 50 μg/ml), NF6 (95.122 ± 0.40 μg/ml), NF3 (100.715 ± 06 μg/ml), and NF5 (103.40 ± 07 μg/ml) against A. aegypti after 24 h. So, these strains a have great potential to be used as biological control especially against A. aegypti as compared to the C. pipiens.