Abstract

Plant-growth-promoting rhizobacteria (PGPR) introduced into agricultural ecosystems positively affect agricultural production and constitute an ecological method for sustainable agriculture. The present study demonstrated the effects of two PGPR, Pantoea agglomerans strain Pa and Bacillus thuringiensis strain B25, on seed germination, on the plant growth of two durum wheat varieties, Bousselam and Boutaleb, and on the frequency of the cultivable beneficial bacterial community. The bacterial strains were used as seed primers (individually or in consortia) by coating them with carboxymethyl cellulose (CMC 1%). The effect of PGPR was negligible on germinative ability but improved seed vigor in the Boutaleb variety after inoculation with the Pa strain alone or in combination with the B25 strain. The results showed that the germination capacity depends on the wheat variety. It seemed to be better in the Bousselam variety. Analysis of the results of morphological plant parameters in sterile compost after 75 days under controlled conditions (16 h light, 26/16 °C day/night) showed a significant improvement in plant growth in both wheat varieties with the Pa strain alone or in combination. Chlorophyll (a, and total), carotenoid, and total soluble sugars were significantly increased, while proline and MDA were strongly reduced by inoculation of the Bousselam variety. Bacterial survival of the Pa and B25 strains in the rhizosphere of sterile compost was appreciable (105–107 CFU/g) for both the Pa and B25 strains. Only the Pa strain was endophytic and able to colonize roots. Contrary to sterile compost, the different inoculation treatments in natural soil (after 114 days) significantly improved all morphological parameters and chlorophyll pigments in both wheat varieties. The reduction of proline contents at the leaf level was observed with Pa, mainly in Bousselam. Bacterial densities of the rhizosphere and endophyte cultivable communities did not differ significantly. However, the number of cultivable beneficial bacteria isolated from roots and rhizosphere with multiple PGP traits was significantly increased. Bacterial survival of CMC-coated seed inoculum was appreciable and remained constant, especially for the Pa strain, during 21 months at room temperature. Based on these results, the PGPR used after seed priming would be a feasible and sustainable strategy to improve soil fertility and promote growth of durum wheat in stressful and non-stressful environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call