Abstract The authors seek to design a lower limb exoskeleton to augment human finned swimming; however, data associated with human finned swimming previously did not exist, particularly data that characterizes the active joint torque requirements for human-scale finned swimming motion and the corresponding thrust generation. Since these data are not directly measurable nor easily computed in human subject experiments, the authors instead employed a human-scale robotic platform to characterize the relationship between joint torque, speed, power, and thrust production during flutter kick swimming, specifically at the hip joints. Among the useful insights from this study: (1) the underwater environment can be accurately modeled as a simple viscous load as seen by the hip joints, where viscous coefficient depends on the type of fin; (2) accordingly, for a given fin, movement at any amplitude and frequency is invariant when motion is normalized by amplitude; velocity and torque by the product of amplitude and frequency; and power and thrust by the square of the product of amplitude and frequency; (3) the power-specific thrust is invariant, regardless of fin type, amplitude of motion, and frequency of motion; and 4) the phasing between right and left legs does not have a significant effect on thrust generation (i.e., kicking in-phase and kicking in opposition behave similarly). The authors hope this data will be useful to other researchers interested in developing lower limb exoskeletons to augment underwater human finned swimming.