Thromboxane A2 (TXA2) is an important eicosanoid in the cardiovascular system, and increasing evidence suggests that TXA2 receptors (TPs) and their ligands may constitute valuable tools for the development of neuroprotective drugs. However, the role of TPs on seizure-induced damage has not been investigated. Therefore, we evaluated the effects of SQ 29,548, a potent and selective TP antagonist—on neuromotor performance, neurodegeneration, reactive astrocytosis, and c-Fos protein immunoreactivity after pilocarpine-induced status epilepticus (SE) in mice. Adult C57BL/6 mice received intracerebroventricular SQ 29,548 injections 90 min and 24 h after pilocarpine-induced SE. We found that SQ 29,548 prevented the impairment of neuromotor performance (Neuroscore test) 48 h after pilocarpine-induced SE. Data analysis suggested the existence of two subgroups of SQ 29,548-treated post-SE animals. Eight out of 12 SQ 29,548-treated animals displayed Neuroscore values identical to those of vehicle-treated controls, and were considered SQ 29,548 responders. However, 4 out of 12 SQ 29,548-treated animals did not show any improvement in Neuroscore values, and were considered SQ 29,548 non-responders. Treatment with SQ 29,548 attenuated SE-induced increase in the number of FJC- or GFAP-positive cells in the hippocampus of SQ 29,548 responders. In addition, SQ 29,548 prevented the SE-elicited increase of c-Fos immunoreactivity in the hippocampus. In summary, our results suggest that the TP antagonist (SQ 29,548) improves neurological outcome after pilocarpine-induced SE in mice. The existence of SQ 29,548 responders and non-responders was suggested by results from the Neuroscore test. Additional studies are needed to understand the mechanisms underlying these findings, as well as the potential uses of TP antagonists in the treatment of seizure-induced damage.
Read full abstract