Abstract

It is not known whether thromboxane A2 impairs adenosine triphosphate (ATP)-sensitive K channel function via increased production of superoxide in blood vessels and whether propofol as a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor restores this modification. Rat aortas without endothelium were used for isometric force recording, measurements of membrane potential, and superoxide production and Western immunoblotting. Vasorelaxation to an ATP-sensitive K channel opener levcromakalim was obtained during contraction to phenylephrine (3 x 10(-7) M) or a thromboxane A2 analogue U46619 (3 x 10(-7) M). In some experiments, aortas were incubated with an ATP-sensitive K channel antagonist glibenclamide, a superoxide inhibitor Tiron, a nonselective NADPH oxidase inhibitor apocynin, a hydrogen peroxide scavenger catalase, a xanthine oxidase inhibitor allopurinol, a thromboxane receptor antagonist SQ29548 or propofol (3 x 10(-7) to 3 x 10(-6) M). Levcromakalim-induced vasorelaxation was abolished by glibenclamide in rings contracted with either vasoconstrictor agent. Tiron, apocynin, and propofol, but not catalase, augmented the vasodilator response as well as the hyperpolarization by levcromakalim in aortas contracted with U46619. Tiron, apocynin, SQ29548, and propofol, but not allopurinol, similarly reduced in situ levels of superoxide within aortic vascular smooth muscle exposed to U46619. Protein expression of a NADPH oxidase subunit p47phox increased in these arteries, and this augmentation was abolished by propofol. Thromboxane receptor activation induces vascular oxidative stress via NADPH oxidase, resulting in the impairment of ATP-sensitive K channel function. Propofol reduces this stress via inhibition of a NADPH oxidase subunit p47phox and, therefore, restores ATP-sensitive K channel function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.