Background Deep vein thrombosis (DVT) remains an important medical condition. The biophysical characteristics of thrombus may determine the response to endovascular interventions. We demonstrated that multi-sequence thrombus imaging (MSTI) using magnetization transfer rate (MTR), apparent diffusion coefficient (ADC) and T1 mapping can characterize thrombus organization and identify thrombi amenable to thrombolysis in a murine model. Here, we investigate whether MSTI can be translated to man and how these measurements associate with the outcome of intervention. Methods MSTI was performed in patients with ilio-femoral DVT undergoing lysis at 3T using a 32-channel coil. T2-prepared, bSSFP MR venography (MRV) was acquired with: TR/TE=4.2/2.1ms, flip angle=700, FOV=220x299x200mm, matrix=112x148, slice thickness=2mm, resolution= 2x2mm, averages=1, T2-prep-echo-time=30ms. 3D T1-weighted spoiled-GRE images were acquired with and without an on-resonance MT pre-pulse with: TR/TE=69/ 2.2ms, flip angle=180, FOV=220x299x198mm, matrix= 112x148, slice thickness=6mm, resolution=2x2mm, averages=1. The binomial-block MT pre-pulse had a
Read full abstract