A novel approach for fabricating one, two, and three-dimensional hybrid ZnO and Cu2O nanostructures has been developed. We have controlled the thickness of hybrid ZnO nanosheets to reach nanoscale at room temperature. The ability of engineering hybrid ZnO nanowires in few minutes is demonstrated. Moreover, supposed mechanism has been suggested and supported by the in situ SEM analysis for a series of picked samples during the reaction. The morphology transition of Cu2O nanoparticles to hierarchical nanowires and nano-flowers is highlighted as experimental evidences for Abdelmohsen theory for morphology transition engineering (ATMTE). In addition, the ability of multi-walled carbon nanotubes (MWCNTs) to act as a structural directing material for engineering nanowires is introduced. A hypothesis for engineering of micro and nanostructures (HEMNS) that may be applied for nearly all solid materials is demonstrated. Finally, the possibility of engineering Zn-oxidene and thin films are introduced.