The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of 1H and 15N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with 15N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the 15N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that 15N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques.
Read full abstract