The complexity of biaxial tests and analysis of their results makes it difficult to study the interlaminar shear properties of fibre-reinforced composites, particularly under through-thickness compression, which occurs in thick-walled composite elements. The improvements in experimental methods to study the features of the nonlinear behaviour of composites under biaxial loading is now an important and relevant task in the development aircraft structural elements made of carbon fibre-reinforced polymers. This study aimed to develop a new experimental approach for the reliable determination of the interlaminar shear properties of laminates under through-thickness compression using a standard testing machine. An appropriate V-notched specimen was developed based on the configuration of well-known Iosipescu and butterfly-shaped specimens. The approach is demonstrated using woven carbon/epoxy laminates. Both the preliminary assessment of the stress fields under combined compression/shear loading and the analysis of fracture mechanisms were performed with finite-element modelling in a three-dimensional formulation. The digital image correlation (DIC) method was used to obtain experimental, full-field deformations of the specimens and to estimate the uniformity of the strain distribution in the gauge section. The stress–strain curves were obtained under biaxial loading, and the corresponding features of the composite failure behaviour were analysed in detail. It was found that the maximum compression strain on the stress–strain curves, in some cases, corresponded to the discontinuity in the composite structure. In these cases, the disproportionate changes in through-thickness strains in the gauge section of the specimens were recorded at the maximum load. With the increase in through-thickness compression stresses, the difference between the shear strength values, determined by the maximum load and the maximum compressive strain, increased by up to 20%. It was shown that the assessment of the composite strength at maximum load at the design stage significantly increased the risk of premature failure of the composite elements during exploitation.
Read full abstract