Problem statement. The task of prediction for thermal air pollution and assessing the risk of thermal damage to people during a fire at an industrial site is considered. The task is to calculate 3D temperature fields during a fire and, based on this, to assess the risk of thermal damage to people. The purpose of the article. Development of a 3D numerical model for calculating thermal air pollution and assessing the risk of thermal damage to workers at an industrial site in the case of a fire. Methodology. A three-dimensional energy equation was used to model the process of thermal air pollution at an industrial site in the case of a fire. A three-dimensional equation for the velocity potential is used to calculate the air flow velocity field at the industrial site. For the numerical integration of the equation for the velocity potential, the splitting method is used. For the numerical integration of the three-dimensional energy equation, it is split at the differential level into two equations. The first equation describes the spread of temperature due to the movement of air masses. The second equation describes the temperature distribution due to thermal conductivity. For the numerical integration of the first equation, a variable-triangular difference splitting scheme is used. An explicit difference scheme is used for the numerical integration of the second equation. Scientific novelty. A 3D numerical model was created, which allows to quickly calculate the dynamics of the formation of thermal air pollution areas at the industrial site and, based on this information, to predict the risk of thermal damage to people in the work zones at the industrial site. The model is based on the numerical integration of the aerodynamic and heat transfer equations. The model allows to quickly calculate the dynamics of the thermal zones’ formation at the industrial site in the case of a fire. Practical value. The developed model makes it possible to predict the dynamics of changes in temperature fields in the air that occur during a fire at an industrial site. The numerical model can be used to determine zones of intense thermal pollution and assess the risk of thermal damage to workers. Conclusions. On the basis of the developed 3D numerical model, a code was created for conducting a computational experiment. The developed code allows to quickly calculate the dynamics of the formation of thermal air pollution areas at an industrial site during a fire. Based on the received information, the risk of thermal damage to workers is assessed. The results of the computational experiment are presented.
Read full abstract