Abstract

Abstract This paper presents a thermo-elasto-hydrodynamics model (TEHD) based on a mass conservative generalized Reynolds equation, coupled with three-dimensional (3D) energy equation for the oil film, and a full 3D thermo-mechanical model for the pads. The model uses a regularization technique to consider film thickness discontinuities created by scratches. The numerical results are compared to the experimental results obtained from a rocker-backed, five tilting pads journal bearing (TPJB) with single and multiple scratches. The numerical model achieved good agreement, especially with respect to pad temperatures and dynamic coefficients. Discrepancies were observed at low speed but only on the stiffness in the load direction. The numerical model shows a significant drop in the pressure field at the location of the scratches, and a significant pressure rise between two consecutive scratches accompanied by a decrease in film thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.