Abstract

The dynamic characteristics of tilting-pad journal bearings (TPJBs) are strongly related to their geometric parameters, most importantly the bearing clearance. In turn, the bearing clearance in TPJBs is strongly dependent on the machining tolerances of the bearing parts and their assembling. Considering that, the machining tolerances of the pads can be of the same magnitude order of the oil film thickness in the bearing, it is uncertain that the TPJB will have the originally designed geometry after assembling. Therefore, the resultant dynamic characteristics of the TPJB also become uncertain. In this work, we present an investigation of tilting-pad bearings and their equivalent dynamic coefficients when subjected to dimensional variability. First, we perform a stochastic analysis of the system using a thermo-hydrodynamic (THD) model of the tilting-pad bearing and considering the bearing clearance in each pad as an independent random variable (varying between minimum and maximum values). We show that the scattering of the results of the dynamic coefficients is limited by the values obtained from TPJBs with all pads with maximum or minimum possible clearances. Second, we apply the concepts of reliability analysis to develop a design procedure for tilting-pad bearings. This design methodology considers the results obtained in the stochastic analysis and it allows the Engineer to appropriately design the bearing for a given probability of success or, inversely, a given probability of failure. Such approach assures a level of reliability to the dynamic coefficients of designed TPJBs in face of their dimensional variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.