Estimates of exposure are critical to prioritize and assess chemicals based on risk posed to public health and the environment. The U.S. Environmental Protection Agency (EPA) is responsible for regulating thousands of chemicals in commerce and the environment for which exposure data are limited. Since 2009 the EPA's ExpoCast ("Exposure Forecasting") project has sought to develop the data, tools, and evaluation approaches required to generate rapid and scientifically defensible exposure predictions for the full universe of existing and proposed commercial chemicals. This review article aims to summarize issues in exposure science that have been addressed through initiatives affiliated with ExpoCast. ExpoCast research has generally focused on chemical exposure as a statistical systems problem intended to inform thousands of chemicals. The project exists as a companion to EPA's ToxCast ("Toxicity Forecasting") project which has used in vitro high-throughput screening technologies to characterize potential hazard posed by thousands of chemicals for which there are limited toxicity data. Rapid prediction of chemical exposures and in vitro-in vivo extrapolation (IVIVE) of ToxCast data allow for prioritization based upon risk of adverse outcomes due to environmental chemical exposure. ExpoCast has developed (1) integrated modeling approaches to reliably predict exposure and IVIVE dose, (2) highly efficient screening tools for chemical prioritization, (3) efficient and affordable tools for generating new exposure and dose data, and (4) easily accessible exposure databases. The development of new exposure models and databases along with the application of technologies like non-targeted analysis and machine learning have transformed exposure science for data-poor chemicals. By developing high-throughput tools for chemical exposure analytics and translating those tools into public health decisions ExpoCast research has served as a crucible for identifying and addressing exposure science knowledge gaps.