The Warrior Injury Assessment Manikin (WIAMan) anthropomorphic test device (ATD) has been originally developed to predict and prevent injuries for occupants in military vehicles, in an underbody blast environment. However, its crash performance and biofidelity of the thoracic region have not been explored. The aim of this study was to determine and evaluate the WIAMan thoracic responses in a typical frontal sled test. The 40 kph frontal sled tests were conducted to quantify the WIAMan thoracic kinematics, chest deflection, and belt loads. Comparative biofidelities of the WIAMan thorax and other surrogates, including postmortem human surrogates (PMHSs), Hybrid III, and test device for human occupant restraint (THOR) ATDs, were assessed under comparable testing conditions. The similarities and differences between WIAMan and the other surrogates were compared and analyzed, including the motion of bilateral shoulders and T1, time histories of chest deflections, and belt loads. The CORrelation and Analysis (CORA) ratings were used to evaluate the correlations of thoracic responses between the ATDs and PMHS. Compared to the PMHS and THOR, the WIAMan experienced a similar level of left shoulder forward excursions. Larger chest deflection was exhibited in WIAMan throughout the whole duration of belt compression. Differences were found in belt loads between subject types. Overall, WIAMan had slightly lower CORA scores but showed comparable overall performance. The overall thoracic responses of WIAMan under the frontal sled test were more compliant than HIII, but still reasonable compared with PMHS and THOR. Comprehensive systematic studies on comparative biofidelity of WIAMan and other surrogates under different impact conditions are expected in future research.