Sheet incremental forming (ISF) is a promising technology. It is inexpensive and does not require particular dies. Sheet thinning, however, has always been one of the forming defects which impede the process’s wide application. Although a multi-stage forming process is supposed to be effective to deal with this problem, it is still uncertain how the process can reduce thickness thinning and there is no applicable rule to determine the favorable number of forming stages. In this work, based on a truncated cone, a finite element method (FEM) model for a double-pass forming was established first. Unlike simplifications in previous studies, with the process of the three-dimensional coordinates in numerical controlled (NC) machining code, the tool trajectory in this simulation model is the same as that in real work. With this approach, it was expected to gain reliability of the simulation result, and then this simulation result and a single-pass forming result were analyzed. The results of the analysis indicate that more uniform thickness distribution in the double-forming process largely benefits from the increase of the total plastic deformation zone. Finally, under the condition of constant volume in deformation, an equation was proposed to work out the right number of necessary forming stages and the rule of this equation was verified with a relatively complex product.
Read full abstract