The detection of nitroaromatic explosives in real samples is essential for environmental monitoring because of their strongly powerful nature and wide applications in industries. Aggregation-induced emission enhancement (AIEE) active fluorescent probe has been widely employed to detect nitroaromatic explosives. Hereby, a simple V-shaped bispyrene-based fluorescent probe (called py-o) with AIEE properties was designed and synthesized, which was fully charactered by 1D NMR, ESI, FTIR, and 2D NOESY spectra. The py-o displayed bright blue-green fluorescence excimer emission at 480 nm in DMF/H2O (v/v 1:1). It is observed that the fluorescence excimer emission of py-o at 480 nm was quenched by PA in solution with a quenching constant of 5.45 × 104 M–1, and the limit of detection was approximately 0.139 μM. The details of the sensing mechanism were explained using 1H NMR titrations, Job’s plot and Bensi-Hildebrand methods, which revealed a 1:1 binding ratio via the π-π interactions between PA and py-o. Meanwhile, it exhibited outstanding anti-interference ability in the detection of PA when interfering analytes were added under the same conditions. Furthermore, low-cost thin-layer chromatography (TLC) plates coated with py-o were developed as fluorescent tools for naked-eye detection of PA in the solid state. Therefore, this work provides a new method for constructing an AIEE fluorescent probe for the detection of nitroaromatic explosives to utilize in environmental monitoring.