Thin-film metal conductors featuring high conductivity and stretchability are basic building blocks for high-performance conformable electronics. Gallium-based liquid metals are attractive candidates for thin-film conductors due to their intrinsic stretchability and ease of processing. Moreover, the phase change nature of liquid metal provides an opportunity to create conformal electronics in a substrate-free manner. However, thin liquid metal films tend to break during the solid-to-liquid transition due to the high surface tension of liquid metal. Here, we created breakup-free liquid metal thin films by the electrochemical oxidation of solid gallium films. We show that electrochemical oxidation can enhance the mechanical strength of the gallium oxide layer and its interfacial adhesion to the gallium core. When heated to the liquid state, the oxidized gallium films can maintain their structural integrity on various solid substrates, hydrogels, and even the water surface. The solid-liquid phase change-induced stiffness decrease allowed the gallium films to be conformably attached to various nonplanar surfaces upon heating or water transfer printing. Moreover, we also found that enhanced electrochemical oxidation can result in the formation of structure color due to nanoporous structures on the film surface. We also demonstrate the applications of oxidized liquid metal films in functional electronics, electrophysiological monitoring, and tattoo art.
Read full abstract