The determination of the moduli of subsurface stabilized layers in pavements with unknown and variable layers and thin asphalt layers is a challenging problem. Reliable estimation of moduli cannot be obtained from backcalculation of falling weight deflectometer data. In addition, for many stabilized layers, full-depth intact cores cannot be obtained from the field, and hence, laboratory determination of the moduli is not possible. Analysis of the seismic property of a pavement is a well-known method for estimation of the surface modulus of the pavement. This paper proposes a simple methodology on how seismic data acquired on the pavement surface can be effectively used to estimate the modulus of the surface layer as well as those of the subsequent subsurface layers of a flexible pavement. A research study was conducted on three hot-mix asphalt pavements with a foamed asphalt (FA) stabilized base in Maine. These three pavements were tested with both portable seismic and falling weight deflectometer equipment. Cores were taken from the same locations and tested in the laboratory for their resilient moduli. The modulus values obtained from different tests were compared, the effect of temperature on the modulus of the FA was evaluated, and the deflections computed from layered elastic analysis by use of the predicted modulus of the FA layer were compared with the observed deflections. It is concluded that the portable seismic equipment can be used to determine accurate moduli of subsurface stabilized layers. The practical advantages of using such equipment warrant further study for refinement of the method.