Indoor and outdoor heat stress, which can appear during warm periods of the year, often has a negative impact on health and reduces productivity at work and study. Intense heat waves (HWs) are causing increasing rates of morbidity and mortality. This study aimed to analyze the coupling and delay of indoor and outdoor heat stress during HW events, using the example of ten workplaces (WPs) situated in different offices and buildings in the medium-sized city of Freiburg, Germany. The relationships between air temperature, humidity, and thermal stress intensity in the WPs were explored during HW periods. It was found that the level of thermal load in the investigated WPs was very different compared to that outdoors (during HWs and the entire summer). The mean physiologically equivalent temperature (PET) for the summer of 2022 inside the investigated offices was 2 °C higher than outside. All classes of thermo-physiological stress were observed outdoors at a meteorological station during the study period. While at eight of the ten workplaces, the most frequent physiological stress was slight heat stress (ranging between 62.4% and 97.4% of the time), the other two WPs were dominated by moderate heat stress (53.7% and 60.6% of the time). The daily amplitudes as well as diurnal courses of air temperature, humidity, and PET during the summer differed significantly at the ten different WPs. It is suggested to use vapor pressure instead of relative humidity to characterize and compare different HWs both outside and inside. It is proposed for future work research to analyze not only room and building characteristics but also the characteristics of the surroundings of the building for a better understanding of the key factors that influence human thermal comfort in different workplaces. A framework of the drivers affecting the coupling of outdoor and indoor heat stress is proposed.
Read full abstract