Simple SummaryAnimals adopt several strategies to regulate their body temperature by promoting heat loss or gain in hot and cold environments, respectively. This mechanism of heat loss or production is performed in thermal windows. A thermal window is a structure where many blood capillaries facilitate thermal exchange in this region. The presence of feathers, hair, or glabrous (hairless) skin and their structural characteristics greatly influence each species’ capacity to maintain thermal comfort. This factor needs to be considered when implementing new monitoring or measuring techniques such as infrared thermography since interpretations may vary due to the presence or absence of these structures. It is essential to recognize the effects of glabrous skin, hair, and feathers on thermoregulation to identify species-specific thermal windows that allow accurate evaluations of the thermal state of domestic animals.The objective of this review is to describe and analyze the effect of feathers, hair, and glabrous (hairless) skin on the thermoregulation of domestic and endotherm animals, especially concerning the uses and scope of infrared thermography (IRT), scientific findings on heat and cold stress, and differences among species of domestic animals. Clinical medicine considers thermoregulation a mechanism that allows animals to adapt to varying thermal environmental conditions, a process in which the presence of feathers, hair, or glabrous skin influences heat loss or heat retention, respectively, under hot and cold environmental conditions. Evaluating body temperature provides vital information on an individual’s physiological state and health status since variations in euthermia maintenance in vertebrates reflect a significant cellular metabolism deviation that needs to be assessed and quantified. IRT is a non-invasive tool for evaluating thermal responses under thermal stress conditions in animals, where the presence or absence of feathers, hair, and glabrous skin can affect readings and the differences detected. Therefore, anatomical regions, the characteristics of feathers, hair, glabrous skin such as structure, length, color, and extension, and strategies for dissipating or retaining heat together constitute a broad area of opportunity for future research into the phenomena of dermal thermoregulation in domestic species.