We present imaging of molecular gas emission in the star-forming spiral galaxy NGC 6946. Our 12 CO(1{ 0) and 12 CO(3{2) images, made at 22 00 resolution with the IRAM 30-m and the Heinrich Hertz 10-m radio telescopes, are the most extensive observations of molecular gas in this galaxy and are among the most extensive observations of molecular gas in any spiral galaxy. The 12 CO(1{0) emission shows a central concentration aligned in a north-south ellipse, an extended diuse component plus concentrations in the outer spiral arms. 12 CO(1{0) is detected across most of the optical disk out to a projected radius of nearly 300 00 . The molecular component in NGC 6946 is unusually massive, with MH2=MHI =0 :57. The scale length of the disk in 12 CO(1{0) is the same, to within 5%, as the VRI, H ,1 5m, and FIR disks. The 12 CO(3{2) data shows broadly similar structure to the 12 CO(1{0) image out to the observed limit of 200 00 , although the arm-interarm contrast of 12 CO(3{2) is signicantly larger than that of 12 CO(1{0) which suggests that molecules in the spiral arms are warmer or reside longer there. The rotation curve derived from the 12 CO(1{0) velocity eld agrees, within the uncertainties, with the H i rotation curve. The velocity dispersion is 40 10 km s 1 in the inner 2 kpc and 8 3k m s 1 in the disk, without tendency to increase in the spiral arms. Spectra of the 13 CO(1{0), 13 CO(2{1), 12 C 18 O(1{0) isotopomers for several positions are used for line ratio studies of the state of the molecular ISM in NGC 6946. In the centre of NGC 6946 our LVG analysis suggests that the beam-averaged gas kinetic temperature is 40 5 K, the molecular gas density is (3:3 0:3) 10 3 cm 3 and that line opacities are high, with 12CO(3 2) 10. A star formation eciency image for NGC 6946, made from the H image divided by the molecular gas image, ranges by over two orders of magnitude with highest values found in the northeastern spiral arm. The 6 cm polarized emission image, which traces the regular part of the magnetic eld, appears anti-correlated with the star formation eciency. We present an analysis of the ISM in NGC 6946's disk by making 1-D and 2-D comparisons of images made in several wavebands. Using a point-by-point correlation technique, we investigate the distribution and kinematics of the molecular gas and its relation to the neutral and ionized gas, the mid-infrared-emitting dust, the radio continuum and the magnetic eld, and nd that the molecular gas is closely associated with the 7m-emitting dust. The highest correlation between any pair of tracers is found between the mid-infrared emission and the total radio continuum emission at 6 cm. This cannot be due to dust heating and gas ionization in star-forming regions because the thermal radio emission is less correlated with the mid-infrared emission than the nonthermal emission. A coupling of magnetic elds to gas clouds is proposed as a possible scenario.
Read full abstract