Preoptimizing perovskite films may generally improve the performance of the final perovskite solar cells (PSCs). However, the research on whether the film optimization fully contributes to the enhancement of the final PSCs has been long neglected. We demonstrated that the preparation of metal electrodes by high-vacuum thermal evaporation, an unavoidable step in almost all device fabrication processes, will damage the surface of perovskite films, resulting in component escape, defect density rebound, carrier extraction barrier, and film stability deterioration. Therefore, the prepared perovskite film and the final film actually working in devices are not exactly the same, and the contribution of film optimization to the device improvement was weakened. We designed a bilayer structure composed of graphene oxide and graphite flakes to eliminate the unwanted film inconsistencies and thus save the film optimization loss. Therefore, the efficient PSCs with power conversion efficiency of 25.55% were obtained, which demonstrated negligible photovoltaic performance loss after operating for 2000 hours.
Read full abstract