Abstract

The crystallization of amorphous Sn-doped TlInS2 films into three polymorphs has been studied by kinematic electron diffraction. The results demonstrate that the crystallization of 30-nm-thick amorphous films produced by thermal evaporation in high vacuum can be described by the Avrami–Kolmogorov equation: Vτ = V0[1–exp(–kτm)]. Kinematic electron diffraction patterns of the TlIn1–хSnxS2 films have been used to assess the effect of doping with Sn on the growth dimensionality and the activation energy for the crystallization of the amorphous films and the unit-cell parameters of the resultant crystalline materials. Doping extends the temperature range and effective activation energy for the crystallization of the amorphous films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.