AbstractThe scaling properties of the temperature structure function (SF) and temperature–velocity cross-structure function (CSF) are investigated in turbulent Rayleigh–Bénard convection (RBC). The measured SFs and CSFs exhibit good scaling in space and time and the resulting SF and CSF exponents are obtained both at the centre of the convection cell and near the sidewall. A universal relationship between the CSF exponent and the thermal dissipation exponent is found, confirming that the anomalous scaling of passive temperature fluctuations in turbulent RBC is indeed caused by the spatial intermittency of the thermal dissipation field. It is also found that the difference in the functional form of the measured SF and CSF exponents at the two different locations in the cell is caused by the change of the geometry of the most dissipative structures in the (inhomogeneous) temperature field from being sheetlike at the cell centre to filament-like near the sidewall. The experiment thus provides direct evidence showing that the universality features of turbulent cascade are linked to the degree of anisotropy and inhomogeneity of turbulent statistics.
Read full abstract