Abstract

A systematic study of the thermal dissipation field and its statistical properties is carried out in turbulent Rayleigh-Bénard convection. A local temperature gradient probe consisting of four identical thermistors is made to measure the normalized thermal dissipation rate epsilonN(r) in two convection cells filled with water. The measurements are conducted over varying Rayleigh numbers Ra (8.9x10(8)<approximately Ra<approximately 9.3x10(9)) and spatial positions r across the entire cell. It is found that epsilonN(r) contains two contributions; one is generated by thermal plumes, present mainly in the plume-dominated bulk region, and decreases with increasing Ra. The other contribution comes from the mean temperature gradient, being concentrated in the thermal boundary layers, and increases with Ra. The experiment provides a complete physical picture about the thermal dissipation field and its statistical properties in turbulent convection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.