Abstract
The time-averaged local thermal dissipation rate epsilonN(r) in turbulent convection is obtained from direct measurements of the temperature gradient vector in a cylindrical cell filled with water. It is found that epsilonN(r) contains two contributions. One is generated by thermal plumes, present mainly in the plume-dominated bulk region, and decreases with increasing Rayleigh number Ra. The other contribution comes from the mean temperature gradient, being concentrated in the thermal boundary layers, and increases with Ra. The experiment thus provides a new physical picture about the thermal dissipation field in turbulent convection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.