The transition of graphene from the lab to consumer goods is still a challenging job that necessitates efficient and cost-effective large-scale graphene production. This study combines electrochemical exfoliation in an aqueous solution of sulfuric acid (1M H2SO[Formula: see text] and hydrogen peroxide (3% H2O[Formula: see text] followed by thermal deoxygenation at a temperature of 800[Formula: see text]C within the ambient environment. This method allows the inexpensive synthesis of pristine graphene for various industrial applications. X-Ray diffraction (XRD) results for pristine graphene showed a distinct peak at 2[Formula: see text] with a corresponding interplanar distance ([Formula: see text] of 3.3754 Å and a crystallite size of 18 nm. XRD statistics indicated that the crystal structure of the original graphene was preserved. The crystalline structure was recovered and the interplaner distance was decreased following the high temperature thermal reduction. According to Raman spectroscopy, the impurity degree (I[Formula: see text]/I[Formula: see text] region fraction of pristine graphene was 0.211. This indicates that the original graph produced by the current method has little distortion. Raman analysis shows that there is a linear red shift in peaks D-band (D), G-band (G), and second order of the D-band (2D) due to the increase in phonon–phonon nonlinear interactions with increasing temperature, so that peaks (D), (G) and (2D) shifts are shown. The majority of the functional groups were discovered to be eliminated after high temperature thermal treatment. The three-dimensional graphene sheet is highly defined and intricately coupled in the microstructure analysis, resulting in a laxer and porous structure. When treated at a temperature below 800[Formula: see text]C, there was only minor damage to the reduced graphene oxide (RGO) microstructure. The results of the Atom Force Microscope (AFM) demonstrated that the flaws spread over time from the layer boundaries and pores to the edges and eventually resulted in a separate RGO archipelago. According to TGA analysis, at temperatures up to 800[Formula: see text]C, the RGO sheet loses up to 45% of its weight.
Read full abstract