In this study, both vanadium and copper elements were anchored on graphitic carbon nitride (gCN) (denoted as V/Cu/gCN) via a thermal decomposition process as a novel nanosheet photocatalyst for the removal of monocrotophos (MCP). The prepared nanosheet features were studied by utilizing XRD, UV–Visible absorption spectrometry, PL, FE-SEM, TEM, and XPS techniques. These analytical techniques revealed the successful formation of direct Z-scheme heterojunctions of V/Cu/gCN nanosheets. The dopant materials significantly enhanced the electron–hole separation and enhanced the removal rate of MCP as compared with bulk gCN. The investigation of effective operating conditions confirmed that a higher removal of MCP could be obtained at a doping concentration of 0.3 wt% and a catalytic dosage of 8 mg with 80 min of visible-light irradiation. The generation of various reactive radicals during the degradation process of the photocatalyst was observed using a scavenging treatment process. Additionally, the scavenging process confirmed that e−, OH•, h+, and O2•− played a major role in MCP degradation. The direct Z-scheme dual-heterojunction mechanism, as well as the possible pathway for the fragmentation of MCP by the V/Cu/gCN nanosheet photocatalyst, was derived in detail. This research article provides a novel perspective on the formation of excellent semiconductor photocatalysts, which exhibit enormous potential for environmental treatments.