Abstract Lightweight pressure vessels of type IV for hydrogen storage consist of a thermoplastic inner liner, commonly from polyethylene or polyamide. The liner is the permeation barrier against the compressed gas and must prevent the formation of cracks, also after temperature changes, for example after refueling processes. In the present work high-density polyethylene, cross-linked polyethylene, polyamide 6 and polyamide 12 were characterized by tensile tests, single notch impact tests and permeations measurements before and after a cyclic thermal aging process. The aging only lead to slight changes of mechanical properties due to post-crystallization, but to a significant decrease of permeation properties. This decrease was contributed to weakened, amorphous regions where chain splitting occurred. Considerable differences in properties resulted from different peroxide cross-linking times of polyethylene at the same temperature. A longer holding time at 200 °C led to an improvement in impact strength by a factor of more than three. However, the permeation properties decreased by about 50 %, indicating that peroxide cross-linking in the melt inhibited the formation of crystalline regions.
Read full abstract